Mecánica de los Sólidos – Unidad 5D **Torsión**

Profesor Titular Daniel Millán JTP Eduardo Rodríguez

CONICET y Facultad de Ciencias Aplicadas a la Industria, UNCuyo dmillan@fcai.uncu.edu.ar

San Rafael–Argentina, octubre de 2021

D. Millán (MoCCAI)

Mecánica de los Sólidos

Contenido

4. Torsión en secciones huecas

- 4.1 Secciones multicelulares
- 4.2 Ejemplos de problemas de Torsión mediante FEM
- 4.3 Secciones huecas de paredes gruesas
- 4.4 Secciones huecas de paredes delgadas
- 5. Secciones circulares de diámetro variable
- 6. Torsión general: dominios de torsión
 ⊙ Bibliografía

4.1 Secciones multicelulares

• Ahora deseamos desarrollar algunas relaciones adicionales necesarias para resolver la torsión de ejes huecos con múltiples secciones transversales conectadas.

3/42

D. Millán (MoCCAI)

- La figura ilustra una sección típica con un solo agujero, y estableceremos una teoría capaz de manejar cualquier número de agujeros.
- Se supone que las condiciones de contorno originales de tracción cero en todas las superficies laterales se aplican al borde externo C_0 y a todos los bordes internos C_1, \ldots

$$\boldsymbol{\sigma}_{tor} \cdot \mathbf{n} = \boldsymbol{T}^{(\mathbf{n})} = \mathbf{0},$$

es decir

$$\tau_{xz}n_x + \tau_{yz}n_y = \Phi_{,y}n_x - \Phi_{,x}n_y = 0.$$

• Por tanto, como antes, implicará que la función de tensión es una constante en cada frontera $C_k, k = 0, 1, ...,$

 $\Phi = \Phi_k$ sobre C_k , donde Φ_k son constantes.

• Con respecto a la función de tensión, el valor de Φ puede elegirse arbitrariamente solo en un borde, comúnmente este valor se toma como cero en la frontera exterior C_0 similar al caso simplemente conectado.

• De la condición de tracción cero en cada frontera es posible derivar la relación que debe cumplir el desplazamiento

$$\tau_{xz}n_x + \tau_{yz}n_y = 0$$

$$G\theta((\omega_{,x} - y)n_x + (\omega_{,y} + x)n_y) = 0$$

$$\theta(\omega_{,x}n_x + \omega_{,y}n_y) = \theta(yn_x - xn_y)$$

$$\theta\nabla\omega \cdot \mathbf{n} = \theta(yn_x - xn_y)$$

es decir

$$\frac{\partial w}{\partial n} = \theta(yn_x - xn_y)$$
 sobre C_k .

- Por lo tanto, estas condiciones implican que la función de tensión y el desplazamiento de alabeo se pueden determinar (hasta una constante arbitraria) en cada frontera C_k .
- Para secciones conectadas de forma múltiple, *multicelulares*, los valores constantes de la función de tensión en cada una de las fronteras interiores, se determinan requiriendo que el desplazamiento w sea una función univaluada¹.

¹Función simplemente valuada (univaluada), solo un valor w = w(x, y) es asignado para cada valor de $(x, y) \in A$.

D. Millán (MoCCAI)

Mecánica de los Sólidos

• En el ejemplo doblemente conectado que se muestra en la figura anterior, el desplazamiento w será univaluado sobre la frontera C_1 si

$$\oint_{C_1} dw = 0. \tag{4.1}$$

• De la definición del tensor tensión recordamos

$$\begin{split} \tau_{xz} &= G\theta(\omega_{,x}-y) = Gw_{,x} - G\theta y, \\ \tau_{yz} &= G\theta(\omega_{,y}+x) = Gw_{,y} + G\theta x, \end{split}$$

obteniendo

$$w_{,x} = \frac{\tau_{xz}}{G} + \theta y,$$
$$w_{,y} = \frac{\tau_{yz}}{G} - \theta x.$$

• Por lo tanto, volviendo a la integral ésta se puede escribir como

$$\oint_{C_1} dw = \oint_{C_1} \left(\frac{\partial w}{\partial x} dx + \frac{\partial w}{\partial y} dy \right)$$
$$= \frac{1}{G} \oint_{C_1} \underbrace{(\tau_{xz} dx + \tau_{yz} dy)}_{\tau ds} - \theta \oint_{C_1} (x dy - y dx).$$

D. Millán (MoCCAI)

octubre de 2021 6 / 42

- Como observamos $\tau_{xz}dx + \tau_{yz}dy = \tau ds$, donde $\tau = \frac{\partial \Phi}{\partial n}$ es la tensión de corte resultante.
- El segundo término de la integral anterior puede ser determinado aplicando el Teorema de Green en el plano

$$\oint_{C_1} (xdy - ydx) = \int_{A_1} \left(\frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} \right) dx \, dy = 2 \int_{A_1} dA = 2A_1,$$

donde A_1 es el área encerrada por C_1 .

• Combinando los resultados presentados anteriormente, la condición de valor único del desplazamiento de alabeo w, Ec. (4.1), implica que

$$\oint_{C_1} \tau ds = \oint_{C_1} \frac{\partial \Phi}{\partial n} ds = 2G\theta A_1. \tag{4.2}$$

- Por tanto, el valor de Φ en el borde interior C_1 debe elegirse de modo que se satisfaga la Ec. (4.2).
- Si la sección transversal tiene más de un agujero, la Ec. (4.2) debe cumplirse para cada uno; es decir

$$\oint_{C_k} \tau ds = \oint_{C_k} \frac{\partial \Phi}{\partial n} ds = 2G\theta A_k, \tag{4.3}$$

donde $k = 1, 2, 3, \ldots$ indica cada uno de los agujeros interiores.

• Ejemplo 4.1: Muestre que el par resultante se expresa como

$$M_t = 2 \int_A \Phi dA + 2\Phi_1 A_1.$$
 (4.4)

- Además, para el caso de secciones huecas multicelulares, supongamos con ${\cal N}$ agujeros, esta relación se convierte en

$$M_t = 2\int_A \Phi dA + \sum_{k=1}^N 2\Phi_k A_k.$$
 (4.5)

- Justificar estos desarrollos para secciones multiconexas requiere la integración de contornos en un dominio de corte siguiendo los segmentos C_0, ℓ, C_1 como se muestra en la figura al inicio de esta sección. [ver material suplementario]

• Ejemplo 4.1 (cont.):

- Recordamos que solo estamos interesados en satisfacer las condiciones de carga y, por lo tanto, la fuerza resultante debe desaparecer mientras que el momento se reduce a un par de torsión puro M_t alrededor del eje z.
- En la Unidad 5-B, vimos que el torque transmitido por un eje sólido se expresa como

$$M_t = \int_A \left(x \, T_y^{(\mathbf{n})} - y \, T_x^{(\mathbf{n})} \right) dA = \int_A (\tau_{yz} x - \tau_{xz} y) dA.$$

- Si ahora empleamos la función de estrés de Prandtl

$$M_t = \int_A (\tau_{yz} x - \tau_{xz} y) dA = -\int_A \left(x \frac{\partial \Phi}{\partial x} + y \frac{\partial \Phi}{\partial y} \right) dA.$$

- Si hacemos uso de la regla de la derivada de un producto, tenemos

$$x\frac{\partial\Phi}{\partial x} = \frac{\partial(x\Phi)}{\partial x} - \Phi, \quad y \quad y\frac{\partial\Phi}{\partial y} = \frac{\partial(y\Phi)}{\partial y} - \Phi.$$

– Es decir, el par resultante queda expresado por

$$M_t = 2\int_A \Phi dA - \int_A \left(\frac{\partial(x\Phi)}{\partial x} + \frac{\partial(y\Phi)}{\partial y}\right) dA.$$
 (a)

• Ejemplo 4.1 (cont.):

- Para completar nuestro análisis debemos recordar el Teorema de Green

$$\int_{A} \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} \right) dA = \oint_{C} (f \, dx + g \, dy).$$

– De (a), identificamos $f=-y\Phi$ y $g=x\Phi,$ obteniendo

$$\int_{A} \left(\frac{\partial (x\Phi)}{\partial x} + \frac{\partial (y\Phi)}{\partial y} \right) dA = \oint_{C} \Phi(x \, dy - y \, dx)$$

- Por lo que en el caso de tener una curva interior C_1 , tenemos $C = C_0 \cup C_1$, siendo la integral de línea anterior determinada como

$$\begin{split} \oint_{C} \Phi(x \, dy - y \, dx) &= \oint_{C_{0}} \Phi(x \, dy - y \, dx) - \oint_{C_{1}} \Phi(x \, dy - y \, dx) \\ &= \Phi_{0} \oint_{C_{0}} (x \, dy - y \, dx) - \Phi_{1} \oint_{C_{1}} (x \, dy - y \, dx) \\ &= 2\Phi_{0} A_{0} - 2\Phi_{1} A_{1} \\ &= -2\Phi_{1} A_{1}, \end{split}$$
(b)

donde se ha empleado que $\Phi = \Phi_0 = 0$ sobre C_0 y que $\Phi = \Phi_1$ sobre C_1 .

- Ejemplo 4.1 (cont.):
- En el caso de secciones multicelulares formadas por N agujeros, tenemos

$$C = C_0 \cup C_1 \cup C_2 \ldots = C_0 \bigcup_{k=1}^N C_k,$$

obteniendo en este caso

$$\oint_{C} \Phi(x \, dy - y \, dx) = \oint_{C_{0}} \Phi(x \, dy - y \, dx) - \sum_{k=1}^{N} \oint_{C_{k}} \Phi(x \, dy - y \, dx)$$

$$= -\sum_{k=1}^{N} 2\Phi_{k} A_{k}.$$
(c)

Si reemplazamos en (a) los resultados obtenidos en (b) o en (c) obtenemos las expresiones deseadas, Ec. (4.4) y Ec. (4.5), respectivamente.

3 1 4 3 1

4.2 Ejemplos de problemas de Torsión – FEM

- Para las secciones simplemente conectadas, $\Phi = 0$ en la frontera de la sección de la pieza, mientras que para las secciones conectadas de forma múltiple, la función puede tomarse igual a cero en el borde exterior, pero debe ser una constante diferente en cada curva de borde interior.
- Este problema de Poisson 2D es posible de ser resuelta fácilmente utilizando el método de elementos finitos.
- A continuación se muestra una serie de secciones que se han resuelto utilizando el software MATLAB[®] con elementos triangulares lineales.

3

12/42

- El primer problema es el de una sección circular con un chavetero circular, problema presentado en el TP09–2021. La sección se muestra en la siguiente figura.
 - El chavetero está representado por la ecuación de borde r = b, mientras que el eje por la relación $r = 2a \cos \theta$.
 - Se sugiere una función de tensión de la forma

$$\Phi = K(b^2 - r^2) \left(1 - \frac{2a\cos\theta}{r}\right),\,$$

donde K es una constante a determinar.

- Los resultados de FEM muestran contornos de función de tensión sobre la sección, y la pendiente de estos contornos da el esfuerzo cortante en la dirección perpendicular.
- Es evidente que el esfuerzo cortante máximo se produce en la raíz del chavetero que actúa tangente al borde en el punto A.

D. Millán (MoCCAI)

Mecánica de los Sólidos

octubre de 2021

- (2) El segundo ejemplo muestra una sección cuadrada con un chavetero cuadrado.
 - Las líneas de contorno de la función de tensión indican regiones de alta tensión en las dos esquinas de reentrada del chavetero.

- (3) En este caso la sección es una de conexión múltiple, con una frontera exterior cuadrado y un agujero interior triangular (equilátero).
 - Los contornos para este caso muestran tres regiones de alta tensión en cada vértice del corte triangular.

 Resultados del Ejemplo 1 presentados en [Sadd, 2021], observe la malla de triángulos empleada y su refinamiento.

D. Millán (MoCCAI)

Mecánica de los Sólidos

octubre de 2021

 Resultados del Ejemplo 2 presentados en [Sadd, 2021], observe la malla de triángulos empleada y su refinamiento.

(4928 Elements, 2561 Nodes)

(Stress Function Contours)

< 🗇 🕨

 Resultados del Ejemplo 3 presentados en [Sadd, 2021], observe la malla de triángulos empleada y su refinamiento.

(4624 Elements, 2430 Nodes)

(Stress Function Contours)

< 🗇 🕨

- (4) El ejemplo final es una sección con una frontera exterior circular con dos chaveteros (circular y hexagonal) y un agujero interior circular.
 - Los contornos para este caso muestran tres regiones de alta tensión en cada vértice del corte triangular.

4.3 Secciones huecas de paredes gruesas

- En la Sección 4.1 desarrollamos la formulación básica para la torsión de ejes huecos con múltiples secciones transversales conectadas.
- Se encontró que la función de tensión debe ser constante en todos los bordes de la sección.
- Aunque Φ puede tomarse igual a cero en el borde exterior, en cada superficie interior se requiere que sea una constante distinta, determinada por la Ec. (4.3), un requisito que asegura desplazamientos idénticos sobre cada frontera interior.
- Bajo tal formulación, las soluciones analíticas de estos problemas son difíciles de desarrollar y solo existen unas pocas soluciones de forma cerrada.
- En lugar de intentar profundizar en estos detalles, solo presentaremos una solución sencilla para mostrar algunas características básicas de tales problemas.

D. Millán (MoCCAI)

Mecánica de los Sólidos

octubre de 2021

- Ejemplo 4.2: sección elíptica con agujero elíptico concéntrico.
- Considere la torsión de una barra con una sección elíptica hueca como se muestra en la figura.
- El borde interno es simplemente una elipse escalada similar a la del borde externo.

- Usando la solución de una sección sólida, se puede demostrar que las curvas de nivel, o las líneas de esfuerzo cortante constante, coinciden con dicha elipse concéntrica escalada.
- El esfuerzo cortante será tangente al contorno de la frontera interna y no actuará ningún esfuerzo sobre la superficie lateral de un cilindro. con sección de elipse interior.

A ID IN A (ID IN A)

• Ejemplo 4.2 (cont.):

- Por lo tanto, la solución para la sección hueca se puede encontrar simplemente quitando el núcleo interno de la solución sólida, lo cual da como resultado la misma distribución de esfuerzos en el material restante.
- Por lo tanto, la solución de la función de tensión para el caso hueco viene dada por

$$\Phi = -G\theta \frac{a^2b^2}{a^2 + b^2} \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1\right),$$

que satisface la ecuación gobernante, las condiciones de contorno y la Ec. (4.2).

- Se encuentra que el valor constante de la función de tensión en la frontera interior es

$$\Phi_1 = -G\theta \frac{a^2 b^2}{a^2 + b^2} \left(k^2 - 1\right).$$

• Ejemplo 4.2 (*cont.*):

Para determinar la capacidad de carga hacemos uso de la Ec. (4.4), obteniendo

$$M_{t} = 2 \int_{A} \Phi dA + 2\Phi_{1}A_{1}$$

= $G\theta \frac{\pi a^{3}b^{3}}{a^{2} + b^{2}} - G\theta \frac{\pi (ka)^{3}(kb)^{3}}{(ka)^{2} + (kb)^{2}}$
= $G\theta \frac{\pi a^{3}b^{3}}{a^{2} + b^{2}} - G\theta \frac{\pi k^{4}a^{3}b^{3}}{a^{2} + b^{2}}$
= $G\theta \frac{\pi a^{3}b^{3}}{a^{2} + b^{2}}(1 - k^{4}),$

es decir el par de la sección sólida debe reducirse restando la carga transportada por el cilindro interior extraído.

 Como se mencionó, la distribución de tensiones en el cilindro hueco será la misma que se encuentra en el material correspondiente de la sección sólida.

D. Millán (MoCCAI)

Mecánica de los Sólidos

octubre de 2021

• El esquema de solución presentado previamente puede aplicarse a otras secciones transversales huecas siempre que el borde de la sección interior coincida con una línea de contorno del problema de sección sólida correspondiente.

Ejercicio 4.1: Para el caso a > b, muestre que el esfuerzo máximo

$$lacksymbol{0}$$
 ocurre en $x=0$ y $y=\pm b$,

está dado por

$$\tau_{\text{máx}} = \frac{2M_t}{\pi a b^2} \frac{1}{1 - k^4}.$$

4.4 Secciones huecas de paredes delgadas

- La torsión de ejes huecos de pared delgada se puede manejar de manera efectiva usando una solución aproximada basada en la analogía de la membrana.
- Considere el tubo general de paredes delgadas que se muestra en la figura.
- Suponemos que el espesor t es pequeño, aunque no necesariamente constante.
- Se toma una sección general *aa* a través de la pared del tubo en AB y se muestra la forma esperada de la membrana.

D. Millán (MoCCAI)

- Según la teoría desarrollada anteriormente, la membrana (función de tensión) será cero en el límite exterior (punto B) e igual a una constante distinta de cero, digamos Φ_o , en el límite interior (punto A).
- Debido a que el espesor es pequeño, habrá poca variación en la pendiente de la membrana y, por lo tanto, la forma *BC* se puede aproximar mediante una línea recta.
- Como la pendiente de la membrana es igual al esfuerzo cortante resultante, podemos escribir

$$\tau = \frac{\Phi_o}{t}.\tag{4.6}$$

 $\bullet\,$ La relación de carga dada por la Ec.(4.4)queda como

$$M_t = 2 \int_A \Phi dA + 2\Phi_o A_i,$$

donde A_i es el área delimitada por la frontera interior.

D. Millán (MoCCAI)

- Usando nuestro supuesto de que la pendiente de la membrana es constante sobre la sección y despreciando la variación en el espesor de la pared, la integral sobre la sección transversal puede aproximarse por $A\Phi_o/2$, donde A es el área de la sección.
- Esto permite que la relación del torque se exprese como

$$M_t = 2\left(\frac{\Phi_o A}{2}\right) + 2\Phi_o A_i = 2\Phi_o A_c, \qquad (4.7)$$

donde A_c es el área delimitada por la línea central de la sección.

• La combinación de las relaciones expresadadas en la Ec. (4.6) y en la Ec. (4.7) nos permite obtener finalmente

$$\tau = \frac{M_t}{2A_c t}.\tag{4.8}$$

• Mientras que el ángulo de giro se determina de la Ec. (4.2)

$$\oint_{C_c} \tau ds = 2G\theta A_c,$$

$$\frac{M_t}{2A_c t} \underbrace{\oint_{C_c} ds}_{L_c} = 2G\theta A_c.$$

octubre de 2021

• Por lo tanto, el ángulo de giro se cexpresa como

$$\theta = \frac{M_t L_c}{4A_c^2 G t},\tag{4.9}$$

donde L_c es la longitud de la línea central de la sección del tubo.

- Estos resultados proporcionan estimaciones razonables de la tensión, la capacidad de torsión y el ángulo de torsión para ejes huecos de pared delgada sometidos a torsión.
- Sin embargo, si el eje hueco tiene esquinas afiladas, como las que se encuentran en secciones cuadradas o rectangulares, normalmente existe una concentración de tensión considerable en estas ubicaciones de reentrada.
- Timoshenko y Goodier (1970) proporcionan detalles adicionales sobre el cálculo de estos efectos de concentración de tensión.

・ロト ・ 同ト ・ ヨト ・ ヨト

• Ejemplo 4.3: Compare las tensiones en un eje circular uniforme de paredes delgadas como predice la teoría aproximada de esta sección y como predice la teoría exacta de Coulomb vista en la Unidad 6-A.

- La figura muestra la sección transversal del eje.
- Según la teoría exacta, el esfuerzo cortante $\tau_{\theta z}$ varía linealmente con el radio y tiene su valor máximo en el radio exterior, es decir

$$(\tau_{\theta z})_{\text{máx}} = \frac{M_t r_o}{I_z} = \frac{M_t r_o}{\frac{\pi}{2} (r_o^4 - r_i^4)} = \frac{M_t r_o}{\frac{\pi}{2} (r_o^2 + r_i^2) (r_o + r_i) (r_o - r_i)}.$$
 (a)

- Ejemplo 4.3 (cont.): [se emplea la notación de [Crandall, 2012]]
- De acuerdo con la teoría aproximada de esta sección, el esfuerzo cortante τ_{sz} se distribuye uniformemente a lo largo del espesor de la pared.
- Usando la Ec. (4.8) y las cantidades definidas en la figura, obtenemos

$$\tau_{sz} = \frac{M_t}{2A_c t} = \frac{M_t}{\frac{\pi}{2}(r_o + r_i)^2(r_o - r_i)}.$$
 (b)

-La diferencia porcentual entre(a)y(b)se calcularía a partir de la razón

$$\frac{\tau_{sz} - (\tau_{\theta z})_{\text{máx}}}{(\tau_{\theta z})_{\text{máx}}} = \frac{\frac{1}{(r_o + r_i)^2 (r_o - r_i)} - \frac{r_o}{(r_o^2 + r_i^2)(r_o + r_i)(r_o - r_i)}}{\frac{r_o}{(r_o^2 + r_i^2)(r_o + r_i)(r_o - r_i)}} \\
= -\frac{r_i}{r_o} \frac{r_o - r_i}{r_o + r_i} \\
= -\frac{r_i}{r_o} \frac{1 - \frac{r_i}{r_o}}{1 + \frac{r_i}{r_o}}$$
(c)

– Por ejemplo, cuando $r_i/r_o = 0.9$, solo hay una diferencia del 4.7 por ciento entre (a) y (b); cuando $r_i/r_o = 0.75$, hay una diferencia del 10.7 por ciento.

D. Millán (MoCCAI)

• Ejemplo 4.3 (cont.):

- Comparamos mediante una gráfica las tensiones en un eje circular uniforme de paredes delgadas con la obtrenida de la teoría exacta de Coulomb, expresión (c), en el rango $\frac{r_i}{r_o} \in [\frac{1}{2}, 1]$.

5. Secciones circulares de diámetro variable

• Concentración del esfuerzo.

- La fórmula de la torsión, $\tau_{\text{máx}} = M_t R / I_0$, no puede aplicarse a las regiones de un eje que tienen un cambio repentino en su sección transversal.
- En ese caso las distribuciones de esfuerzo cortante y deformación cortante en el eje se vuelven complejas, por lo que sólo se pueden obtener mediante el uso de métodos experimentales o, posiblemente, por medio de un análisis matemático basado en la teoría de la elasticidad mediante métodos numéricos.
- La necesidad de realizar un complejo análisis de esfuerzo en una discontinuidad del eje para obtener el esfuerzo cortante máximo, puede eliminarse mediante el uso de un factor de concentración de esfuerzos de torsión, K.
- Como en el caso de los elementos cargados axialmente, K suele tomarse de un gráfico basado en datos experimentales.

D. Millán (MoCCAI)

Mecánica de los Sólidos

• En la figura se muestra un ejemplo para el eje con filete. Para usar este gráfico, primero se encuentra la relación geométrica D/d a fin de definir la curva adecuada y, después de calcular la abscisa r/d, se determina el valor de K a lo largo de la ordenada.

D. Millán (MoCCAI)

octubre de 2021 35 / 42

• Entonces, el esfuerzo cortante máximo se determina a partir de

$$\tau_{\rm máx} = K \frac{M_t R}{I_0}.$$

Aquí la fórmula de la torsión se aplica al más pequeño de los dos ejes conectados, puesto que $\tau_{\text{máx}}$ ocurre en la base del filete, por lo tanto $R = \frac{d}{2}$ e $I_0 = \frac{\pi}{2} \left(\frac{d}{2}\right)^4$.

- Por lo general, al diseñar un eje dúctil sometido a un par de torsión estático no será necesario considerar la concentración de esfuerzos; sin embargo, si el material es frágil, o está sometido a cargas de fatiga, entonces las concentraciones de esfuerzo se vuelven importantes.
- Nota: observe en la gráfica anterior que el aumento del radio r del filete causa una disminución de K. Por lo tanto, el esfuerzo cortante máximo en el eje puede reducirse al aumentar el radio del filete. Además, si el diámetro del eje mayor se reduce, la relación D/d será menor, por lo que el valor de K y por ende el de $\tau_{máx}$ serán inferiores.
- REDONDEAR LOS BORDES!

6. Torsión general: dominios de torsión

- En el caso general se puede demostrar que el giro relativo de una sección no es constante y no coincide tampoco con la función de alabeo unitario.
- A partir del caso general, y definiendo la esbeltez torsional como:

$$\lambda_T \approx L \sqrt{\frac{GJ}{EI_\omega}},$$

donde G, E son respectivamente el módulo de corte y el módulo elasticidad longitudinal, J, I_{ω} son el módulo de torsión y el momento de alabeo y L es la longitud de la barra recta.

– Determinar $J \in I_{\omega}$ requiere conocer el alabeo unitario ω de la sección y la posición del centro de cortante. El cálculo de ω en general es un problema no trivial que involucra resolver un problema de von Neumann sobre la sección para la que se busca el módulo de torsión.

・ロト ・ 同ト ・ ヨト ・ ヨト

- Podemos clasificar los diversos casos de torsión general dentro de límites donde resulten adecuadas las teorías aproximadas. De acuerdo con Kollbruner y Basler²:
 - Torsión de Saint-Venant pura, cuando $\lambda_T \in (10, \infty)$.
 - Torsión de Saint-Venant dominante, cuando $\lambda_T \in [5, 10)$.
 - Torsión alabeada mixta, cuando $\lambda_T \in (2,5)$.
 - Torsión alabeada dominante, cuando $\lambda_T \in (1/2, 2]$.
 - Torsión alabeada pura, cuando $\lambda_T \in (0, 1/2]$.
- El cálculo exacto de la torsión en el caso general puede llevarse a cabo mediante métodos variacionales o usando un lagrangiano basado en la energía de deformación.
- El caso de la torsión alabeada mixta sólo puede ser tratado por la teoría general de torsión.
- Los casos de torsión de Saint-Venant y alabeada puras admiten algunas simplifaciones útiles.

D. Millán (MoCCAI)

²Kollbruner, C.F. & Basler, K., Torsion in structures, an engineering approach, Springer, 1969. [wiki]

- Determinar $J \in I_{\omega}$ requiere conocer el alabeo unitario ω de la sección y la posición del centro de cortante.
- El cálculo de ω en general es un problema no trivial que involucra resolver un problema de von Neumann sobre la sección para la que se busca el módulo de torsión.
- Para un prisma mecánico de sección constante A, el alabeo unitario es una función $\omega(x, y)$ definida sobre dicha sección transversal, que es solución del siguiente problema de Von Neumann:

$$\begin{cases} \frac{\partial^2 \omega}{\partial x^2} + \frac{\partial^2 \omega}{\partial y^2} = 0 & \forall (x, y) \in A, \\ \mathbf{n} \cdot \nabla \omega = \frac{1}{2} \frac{d}{ds} \left[(x - x_C)^2 + (y - y_C)^2 \right] & \forall (x, y) \in \partial A. \end{cases}$$

• Donde, en la expresión anterior, s es la longitud de arco a lo largo del contorno de la pieza, **n** la normal exterior al mismo y (x_C, y_C) son las coordenadas del centro de cortante de la sección.

39/42

・ロト ・ 同ト ・ ヨト ・ ヨト

• El momento de alabeo es la magnitud definida por la integral

$$I_{\omega} = \int_{A} \omega^2(x, y) \, dx dy.$$

• Una vez conocida la función de alabeo unitario, basta calcular:

$$\begin{cases} I_C = \int_A \left[(x - x_C)^2 + (y - y_C)^2 \right] dxdy, \\ W_0 = \int_A \left[\left(\frac{\partial \omega}{\partial x} \right)^2 + \left(\frac{\partial \omega}{\partial y} \right)^2 \right] dxdy, \\ J = I_C - W_0. \end{cases}$$

• Equivalententemente el módulo de torsión puede calcularse a partir de las fórmulas anteriores, llegándose a la expresión compacta:

$$J = \int_{A} \left[(x - x_C)^2 + (y - y_C)^2 - (x - x_C) \frac{\partial \omega}{\partial y} + (y - y_C) \frac{\partial \omega}{\partial x} \right] dx dy.$$

• Si la sección tiene dos ejes de simetría perpendiculares, el cálculo anterior se simplifca un poco ya que $(x_C, y_C) = (0, 0)$ y el alabeo unitario es una función de simetría definida.

D. Millán (MoCCAI)

Bibliografía

- Martin H. Sadd (2021).

Elasticity: Theory, Applications, and Numerics. 4th Ed., Academic Press, London, UK, 2021.

Ansel C. Ugural, Saul K. Fenster (2020).

Advanced Mechanics of Materials and Applied Elasticity. 6th Ed., Academic Press, London, UK, 2020.

Luis Ortiz Berrocal (2005).

Elasticidad. 2da Ed., McGraw-Hill, New York, 2005.

Stephen H. Crandall, Norman C. Dahl, Thomas J. Lardner, M. S. Sivakumar (2012).

An Introduction to the Mechanics of Solids. 3rd Ed. with SI Units, McGraw-Hill, New York, 2012.

James M. Gere, Barry J. Goodno (2016).

Mecánica de Materiales. 8va Ed., Cencage Learning, México, 2016.

Russel C. Hibbeler (2017).

Mecánica de Materiales. 9na Ed., Pearson, México, 2017. Berrow de la construction de la c

D. Millán (MoCCAI)

D. Millán (MoCCAI)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ octubre de 2021

 $42 \, / \, 42$